US009432394B1

a2 United States Patent

Lahiri et al.

US 9,432,394 B1
Aug. 30, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHODS, SYSTEMS, AND COMPUTER 6,862,699 B2 3/2005 Nakashima et al.
READABLE MEDIA FOR CONVERGING ON 6,931,574 Bl 82005 Coupal et al.
NETWORK PROTOCOL STACK GosS208 B2 12006 bk ot a
VULNERABILITIES USING FUZZING 7047297 B2 52006 Huntington et al.
VARIABLES, VULNERABILITY RATINGS 7,278,061 B2 10/2007 Smith
AND PROGRESSIVE CONVERGENCE (Continued)
(71) Applicant: Ixia, Calabasas, CA (US) FOREIGN PATENT DOCUMENTS
(72) Inventors: Abhijit Lahiri, Kolkata (IN); %8 %8 383%33% :i 1%83
Kingshuk Mandal, Kolkata (IN) WO WO 2015/171599 Al 11/2015
(73) Assignee: Ixia, Calabasas, CA (US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Applicant-Initiated Interview Summary for U.S. Appl. No.
patent is extended or adjusted under 35 14/270,333 (Apr. 4, 2016).)
U.S.C. 154(b) by 0 days. (Continued)
(21) Appl. No.: 14/659,309 Primary Examiner — Dao Ho
. (74) Attorney, Agent, or Firm — Jenkins, Wilson, Taylor &
(22) Filed: Mar. 16, 2015 Hunt, PA.
(51) Int. CL (57) ABSTRACT
HO4L 29/06 (2006.01) .
GO6F 21/55 (2013.01) A method for progressive convergence on network protocol
(52) US.Cl stack vulnerabilities includes defining an initial protocol
CPC ' HO4L 63/1433 (2013.01); GOGF 21/552 field and field value space for fuzz testing of a network
""""" (2013.01); HO4L) 63 /1’ 416 (2013.01) communications protocol stack implementation. The
5%) Field of Classificati ’ S ’ h ’ method further includes dividing the initial space into
(58) CII(:C 0 aSSIGSZFl 02111 / S?;jc 1041 63/1416: TI0AL regions corresponding to combinations of protocol fields and
""""""" ’ é /1433 field values. The method further includes assigning vulner-
g lication file f et h hist ability ratings to at least some of the regions. The method
e application file tor compiete search ustory. further includes executing fuzz testing of the network com-
. munications protocol stack implementation using the pro-
(56) References Cited tocol fields and field values corresponding to the regions.
U.S. PATENT DOCUMENTS The method further includes updating the vulnerability
ratings of the regions based on results of the testing. The
5,822,520 A 10/1998 Parker method further includes identifying, based on the updated
g’g;g’ggg g} 13; %88% ;’au%hn et al~1 vulnerability ratings, at least one region with a higher
6671869 B2 12/2003 D?\%SS%IIII i:tt zl' vulnerability rating than other regions. The method further
6707474 Bl 3/2004 Beck et al. includes performing fuzz testing for the sub-regions.
6,757,742 Bl 6/2004 Viswanath
6,814,842 B1 11/2004 Yago et al. 18 Claims, 6 Drawing Sheets

300 \

1
N

302

PROTOCOL FIELD
VALUES

PROTOCOL FIELDS

US 9,432,394 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,735,141 B1* 6/2010 Noelcccornen. HO4L 63/1425
709/223

7,818,788 B2 10/2010 Meier

7,926,114 B2 4/2011 Neystadt et al.

8,046,720 B2 10/2011 Wirth

8,407,798 Bl 3/2013 Lotem et al.

8,745,592 Bl 6/2014 Ormandy et al.

8,819,834 B2 8/2014 Petrica et al.

2002/0186697 Al
2002/0198985 Al
2003/0014669 Al
2003/0036896 Al
2003/0131098 Al
2003/0145039 Al
2003/0172177 Al

12/2002 Thakkar

12/2002 Fraenkel et al.
1/2003 Caceres et al.
2/2003 Skingsley et al.
7/2003 Huntington et al.
7/2003 Bonney et al.
9/2003 Kersley et al.

2004/0025015 Al* 2/2004 Satterlee GO6F 21/51
713/164

2004/0068681 Al 4/2004 Smith
2004/0250124 Al* 12/2004 Chesla GOG6F 21/552
726/13

2005/0235263 Al
2007/0006041 Al

10/2005 Bundy et al.
1/2007 Brunswig et al.

2007/0192863 Al* 8/2007 Kapoor GOG6F 9/505
726/23
2008/0095102 Al* 4/2008 Mengcccooevenni. HO04W 74/04
370/329
2008/0262990 Al* 10/2008 Kapoor GOG6F 9/505
706/20

2008/0288822 Al
2008/0301647 Al
2008/0301813 Al
2008/0320328 Al

11/2008 Wu et al.
12/2008 Neystadt et al.
12/2008 Neystadt et al.
12/2008 O’Leary

2009/0077666 Al* 3/2009 Chenc..c.... GO6F 21/577
726/25
2009/0252046 Al* 10/2009 Canright HO4L 41/22
370/250

2009/0327943 Al
2009/0328190 Al
2010/0058475 Al
2010/0100871 Al
2011/0078798 Al
2011/0214157 Al1*

12/2009 Medvedev et al.
12/2009 Liu et al.
3/2010 Thummalapenta et al.
4/2010 Celeskey et al.
3/2011 Chen et al.
9/2011 Korsunsky GO6F 21/55
726/1
2011/0302455 Al 12/2011 Thomas et al.
2012/0084756 Al 4/2012 Subramanian et al.
2012/0089868 Al 4/2012 Meijer et al.
2013/0259370 Al* 10/2013 Tang ..o GO6K 9/38
382/169
2014/0047275 Al 2/2014 Eddington
2015/0319072 Al 11/2015 Chakrabarti et al.

OTHER PUBLICATIONS

Non-Final Office Action for U.S. Appl. No. 14/270,333 (Jan. 22,
2016).

Notification of Transmittal of the International Search Report and
the Written Opinion of the International Searching Authority, or the
Declaration for International Application No. PCT/US2015/029225
(Aug. 10, 2015).

Commonly-assigned, co-pending U.S. Appl. No. 14/658,860 for
“Methods, Systems, and Computer Readable Media for Simplistic
Visual Representation of Complex Interdependent Network Proto-
col Fields for Network Protocol Fuzzing and Graphical Framework

for Reporting Instantaneous System Level Progress,” (Unpublished,
filed Mar. 16, 2015).

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/527,565
(Apr. 25, 2014).

Final Office Action for U.S. Appl. No. 13/527,565 (Jan. 3, 2014).
“Wireshark,” http://web.archive.org/web/20131231064122/http://
en.wikipedia.org/wiki/Wireshark, pp. 1-6 (Dec. 2013).
Notification of Transmittal of the International Search Report and
the Written Opinion of the International Searching Authority, or the
Declaration for International Application No. PCT/US2013/046129
(Nov. 8, 2013).

Non-Final Office Action for U.S. Appl. No. 13/527,565 (Jul. 30,
2013).

“IxNetwork,” http://www.ixiacom.com/products/ixnetwork, PN:
915-3003-01, Rev. B, pp. 1-4 (May 2011).

Gorbunov et al. “AutoFuzz: Automated Network Protocol Fuzzing
Framework”, International Journal of Computer Science and Net-
work Security, vol. 10, No. 8, pp. 239-245 (Aug. 2010).
Abdelnur et al., “KiF: A stateful SIP Fuzzer”, Proceedings of the 1st
international conference on Principles, systems and applications of
IP telecommunications, pp. 47-56 (2007).

Banks et al., “SNOOZE: Toward a Stateful NetwOrk prOtocol
fuzZEr”, Information Security, pp. 343-358 (2006).

Allen et al., “A Model-based Approach to the Security Testing of
Network Protocol Implementations,” IEEE, Department of Com-
puter Sciences, Florida Institute of Technology, pp. 1-8 (Copyright
2006).

Screenshot of antiparser, antiparser.sourceforge.net (Aug. 17,
2005).

Aitel, “An Introduction to SPIKE, the Fuzzer Creation Kit”, Immu-
nity Inc., White Paper, pp. 1-32 (2004).

Screenshot of Autodafé, an Act of Software Torture, autodafe.
sourceforge.net (Copyright 2004-2006).

Wieser et al., “Security testing of SIP implementations”, Technical
Report, Columbia University, Department of Computer Science, pp.
1-7 (2003).

Amini et al., “Sulley: Fuzzing Framework”, www.fuzzing.org/wp-
content/SulleyManual .pdf (Publication Date Unknown).
Screenshot of VDA Labs, www.vdalabs.com/tools/efs_ gpfhtml
(Publication Date Unknown).

Screenshot of Peach Fuzzing Platform, peachfuzzer.com (Publica-
tion Date Unknown, downloaded from the Internet Aug. 17, 2012).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 10/316,445
(Jun. 9, 2011).

Notice of Panel Decision from Pre-Appeal Brief Review for U.S.
Appl. No. 10/316,445 (Mar. 25, 2011).

Non-Final Official Action for U.S. Appl. No. 10/316,445 (Jan. 4,
2010).

Final Official Action for U.S. Appl. No. 10/316,445 (Jul. 9, 2009).
Non-Final Official Action for U.S. Appl. No. 10/316,445 (Dec. 26,
2008).

Final Official Action for U.S. Appl. No. 10/316,445 (Jul. 9, 2008).
Non-Final Official Action for U.S. Appl. No. 10/316,445 (Dec. 27,
2007).

Screenshot of Ixia PDU Builder Main Screen, p. 1 (May 28, 2002).
Comer, “Internetworking with TCP/IP, vol. 1: Principles, Protocols,
and Architecture,” Third Edition, pp. 203-204, (1995).
Householder at al., “Probability-Based Parameter Selection for
Black-Box Fuzz Testing,” Software Engineering Institute, Technical
Note, CMU/SEI-2012-TN-019, 30 pgs. (Aug. 2012).

* cited by examiner

U.S. Patent Aug. 30, 2016 Sheet 1 of 6 US 9,432,394 B1

Unpredictable High vulnerability areas

Protocol

Field

= Field Values

FIG. 1
(PRIOR ART)

U.S. Patent Aug. 30, 2016 Sheet 2 of 6 US 9,432,394 B1

102
/ 100 \

113 __ NETWORK 1o DEVICE UNDER
EQUIPMENT TEST TEST
N\ DEVICE /
MEMORY |—| PROCESSOR

104
PROTOCOL
STACK —)
IMPLEMETATION

108

114 _/

\ NIC NIC
|| VULNERABILITY

RATINGS
K 106

PROGRESSIVE |)
FUZZER

FiIG. 2

U.S. Patent Aug. 30, 2016 Sheet 3 of 6

300

US 9,432,394 B1

INITIAL TARGET SPACE FOR ATTACKS

PROTOCOL FIELD
VALUES

>
PROTOCOL FIELDS
FIG. 34
300 \
302
PROTOCOL FIELD
VALUES
>

PROTOCOL FIELDS

FiG. 3B

U.S. Patent Aug. 30, 2016 Sheet 4 of 6

300

US 9,432,394 B1

PROTOCOL FIELD
VALUES

302A
0 17 —/ 1 2
1 2 4 3

PROTOCOL FIELDS> F[G 3C

300 \

15
o
B

302

PROTOCOL FIELD
VALUES

PROTOCOL FIELDS

FIG. 3D

U.S. Patent Aug. 30, 2016 Sheet 5 of 6 US 9,432,394 B1

1110} 1]0 302A

FIG. 3E

U.S. Patent

Aug. 30, 2016

400

DEFINE INITIAL PROTOCOL
FIELD AND FIELD VALUE
SPACE FOR TARGETED FUZZ
TESTING OF NETWORK
PROTOCOL STACK
IMPLEMENTATION

Y

402

DIVIDE INITIAL SPACE INTO
REGIONS CORRESPONDING
TO COMBINATIONS OF
PROTOCOL FIELDS AND
VALUES

Y

404

ASSIGN VULNERABILITY
RATINGS TO AT LEAST SOME
OF THE REGIONS

'

406

EXECUTE FUZZ TESTING OF
THE NETWORK
COMMUNICATIONS PROTOCOL
STACK USING THE REGIONS

408

RECORD/UPDATE
VULNERABILITY RATINGS OF
REGIONS OR SUBREGIONS
BASED ON RESULTS OF
TESTING

Sheet 6 of 6

US 9,432,394 B1

FIG. 4

410

]

IDENTIFY, BASED ON
RECORDED/UPDATED
VULNERABILITY RATINGS, AT
LEAST ONE REGION OR
SUBREGION WITH HIGHER

VULNERABILITY RATING

f 414

412

CEASE FUZZ TESTING
AND ANALYZE
PROTOCOL STACK
IMPLEMENTATION FOR
VULNERABILITY USING
IDENTIFIED PARAMETER
SPACE

VALUES
CAUSING
VIOLATIONS

NO

416

Y

SUFFICIENTLY
LOCALIZED?

DIVIDE AT LEAST ONE
IDENTIFIED REGION OR
SUBREGION INTO
SUBREGIONS AND
PERFORM FUZZ
TESTING FOR
SUBREGIONS

US 9,432,394 B1

1
METHODS, SYSTEMS, AND COMPUTER
READABLE MEDIA FOR CONVERGING ON
NETWORK PROTOCOL STACK
VULNERABILITIES USING FUZZING
VARIABLES, VULNERABILITY RATINGS
AND PROGRESSIVE CONVERGENCE

TECHNICAL FIELD

The subject matter described herein relates to testing
implementations of communications network protocol
stacks. More particularly, the subject matter described herein
relates to methods, systems, and computer readable media
for converging on network protocol stack vulnerabilities
using fuzzing variables, vulnerability ratings and progres-
sive convergence.

BACKGROUND

In communications network equipment, protocol stacks
are implemented at least partially software. Vulnerabilities
in protocol stack implementations can be introduced by
weak coding during development and careless modifications
during maintenance. Thus, there exists a possibility of
localization of vulnerabilities in specific sections of code.
FIG. 1 is a graph illustrating how some areas of code may
be more vulnerable than others. In FIG. 1, the three axes
respectively illustrate fields, field values, and protocols. The
cube represents all of the possible combinations of field,
field values, and protocols. The shaded regions in the cube
represent combinations of protocols, fields, and field values
that are likely to cause a network protocol stack implemen-
tation to fail or transition to an invalid state. Due to the
sometimes unpredictable nature of software development,
the locations of such regions are often unknown and must be
identified through testing.

One way to test the vulnerability of the protocol stack is
referred to as black box fuzz testing. Black box fuzz testing
involves the sending of messages to a protocol stack imple-
mentation with one or more field values in the messages
being fuzzed or set to algorithmically changed values. The
goal of fuzz testing is to identify combinations of fields and
field values that cause the network communications protocol
stack to fail or transition to an invalid state.

One way to perform black box fuzz testing is utilizing a
brute force approach. The brute force approach to black box
fuzz testing involves the testing of all possible combinations
of protocols, fields, and field values without reducing the
size of the parameter space during the testing. Because the
parameter space for such brute force testing can be large,
such testing is resource intensive and can require significant
amounts and/or processing power to identify vulnerabilities.
Thus, rather than performing brute force black box fuzz
testing, it is desirable to perform fuzz testing in a manner
that reduces the parameter space to converge on combina-
tions of parameter values that result in communications
network protocol stack vulnerabilities.

Accordingly, there exists a need for methods, systems,
and computer readable media for converging on network
protocol stack vulnerabilities using fuzzing variables, vul-
nerability ratings and progressive convergence.

SUMMARY

The subject matter described herein includes methods,
systems, and computer readable media for converging on
network protocol stack vulnerabilities using fuzzing vari-

10

15

20

25

30

35

40

45

50

55

60

65

2

ables, vulnerability ratings and progressive convergence.
One method for progressive convergence on network pro-
tocol stack vulnerabilities includes defining an initial pro-
tocol field and field value space for fuzz testing of a network
communications protocol stack implementation. The
method further includes dividing the initial space into
regions corresponding to combinations of protocol fields and
field values. The method further includes assigning vulner-
ability ratings to at least some of the regions. The method
further includes executing fuzz testing of the network com-
munications protocol stack implementation using the pro-
tocol fields and field values corresponding to the regions.
The method further includes updating the vulnerability
ratings of the regions based on results of the testing. The
method further includes identifying, based on the updated
vulnerability ratings, at least one region with a higher
vulnerability rating than other regions. The method further
includes performing fuzz testing for the sub-regions.

The subject matter described herein can be implemented
in software in combination with hardware and/or firmware.
For example, the subject matter described herein can be
implemented in software executed by a processor. In one
exemplary implementation, the subject matter described
herein can be implemented using a non-transitory computer
readable medium having stored thereon computer execut-
able instructions that when executed by the processor of a
computer control the computer to perform steps. Exemplary
computer readable media suitable for implementing the
subject matter described herein include non-transitory com-
puter-readable media, such as disk memory devices, chip
memory devices, programmable logic devices, and applica-
tion specific integrated circuits. In addition, a computer
readable medium that implements the subject matter
described herein may be located on a single device or
computing platform or may be distributed across multiple
devices or computing platforms.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter described herein will now be explained
with reference to the accompanying drawings of which:

FIG. 1 is a graph illustrating protocol, field, and value
space for brute force fuzz testing;

FIG. 2 is a block diagram illustrating a system for
converging on network protocol stack vulnerabilities using
fuzzing variables, vulnerability ratings, and progressive con-
vergence according to an embodiment of the subject matter
described herein;

FIGS. 3A-3E illustrate the dividing of the target space for
fuzz testing into regions and sub-regions according to an
embodiment of the subject matter described herein; and

FIG. 4 is a flow chart illustrating an exemplary process for
converging on network protocol stack vulnerability accord-
ing to an embodiment of the subject matter described.

DETAILED DESCRIPTION

The subject matter described herein includes methods,
systems, and computer readable media for converging on
protocol stack vulnerabilities using field values, vulnerabil-
ity ratings, and progressive convergence. FIG. 2 is a block
diagram illustrating an exemplary system for performing
such testing according to an embodiment of the subject
matter described herein. Referring to FIG. 2, a network
equipment test device 100 may implement progressive black
box fuzz testing of a device under test 102. More particu-
larly, test device 100 may test an implementation of a

US 9,432,394 B1

3

network protocol stack 104 that executes on a network
interface card 106 or on another processor within device
under test 102. Network equipment test device 100 also
includes a network interface card 108 for sending test
packets to and receiving test packets from device under test
102.

Network equipment test device 100 further includes a
processor 110 and memory 112. Processor 110 may be a
microprocessor, a field programmable gate array (FPGA) or
an application specific integrated circuit (ASIC) that con-
trols testing implemented by network equipment test device
100. Memory 112 may be volatile or non-volatile memory
that stores executable instructions executed by processor
110. In the illustrated example, memory 112 stores a vul-
nerability ratings module 114 and a progressive fuzzer 116.
Vulnerability ratings module 114 generates or receives ini-
tial vulnerability ratings from a user and provides these
ratings to progressive fuzzer 116. Progressive fuzzer 116
implements black box fuzz testing of network protocol stack
implementation 104 using the vulnerability ratings to iden-
tify progressively smaller subsets of parameters and param-
eter values to which protocol stack implementation is vul-
nerable.

In one embodiment, the user may define an initial target
space for progressive fuzzer 116 to initiate testing or
“attacks” of a network communications protocol stack. In
one example, the target space may be a combination of
network communications different protocol fields and
ranges of values for those fields. FIG. 3A diagrammatically
illustrates an example of an initial target space. In FIG. 3A,
the initial target space is represented by a rectangle where
the length represents protocol fields and the width represents
protocol field values. If the protocol being fuzzed is IP, the
horizontal axis in FIG. 3A may represent a set of protocol
fields in an IP packet that can be fuzzed. For example, the
horizontal axis may represent IP address, type of service,
fragment offset, and time to live. The vertical axis in FIG.
3A may represent all possible values of the protocol fields.
The possible values of each protocol field depend on the
number of bytes in each field. Generally, for binary encoded
fields, the number of possible values is 2% #**) However,
a user may define a subset, such as a range of field values for
each protocol field to be fuzzed. Because fuzz testing
typically involves multiple protocols, the number of fields
and field values to be fuzzed results in a large potential
vulnerability space that must be tested.

The brute force approach to fuzz testing would be to test
all possible combinations of protocol fields and field values
without regard to relative vulnerabilities of the protocol
stack to particular fuzzed field values determined through
fuzz testing. Rather than treating the target test space as a
single large parameter space for fuzz testing, the target space
is divided into regions. In one embodiment, the regions may
be equally sized. In an alternate embodiment, the regions
may be unequally sized. In addition, although a region may
correspond to ranges of one or more protocol field values,
the subject matter described herein is not limited to defining
regions that include ranges of protocol field values. For
example, a region may include discontinuous values of a
protocol field, such as odd numbered, even numbered, or
pseudo-randomly assigned values. The term “region” as
used herein is intended to refer to any suitable subset of a
larger space of protocol field and field value combinations.

FIG. 3B illustrates the dividing of target space 300 into
regions. In the illustrated example, the regions are equally
sized and correspond to combinations of protocol fields and
field values. To illustrate how protocol field values may be

30

40

45

55

4

divided into regions, assume a single 8 bit parameter value
is being fuzzed. The possible values for the field are 0 to 255.
Table 1 shown below illustrates the dividing of the 8 bit
parameter space into 8 regions.

TABLE 1

Example Division of an 8-Bit Protocol Field into 8 Regions

PARAMETER VALUES REGION

0-31
32-63
64-95
96-127

128-159
160-191
192-223
224-255

[N R N

In Table 1, the 8 bit parameter space is divided into 8 equally
sized regions of 32 values each.

Once the test space is divided into regions, the regions are
assigned vulnerability ratings. The vulnerability ratings may
be initial values assigned by the user or by vulnerability
ratings module 114 that indicates an initial vulnerability of
network protocol stack implementation 104 to combinations
of fields and field values in each region. Table 2 shown
below illustrates exemplary vulnerability ratings that may be
assigned to network protocol fields:

TABLE 2
Vulnerability Ratings for Network Protocol Field Values
Vulnerability
Rating 5 (High) 3 (Medium) 0 (Low)
Fields Total Length IHL Version
Fragment Offset Identification = DSCP
Options Flags ECN
TTL
Protocol
Header Checksum
Source IP

Destination IP

In Table 2, a high vulnerability rating of 5 is assigned to IP
header length (IHL), total length, fragment offset, and
options. A medium vulnerability rating of 3 is assigned to
THL, identification, and flags. A low vulnerability is assigned
to protocol version, differentiated services code point
(DSCP), explicit congestion notification (ECN), time to live
(TTL), protocol, header checksum, source IP address, and
destination IP address. Although not illustrated in Table 1,
different vulnerability ratings may be assigned to different
values within a network protocol field. For example, IP
addresses above a certain value may be associated with a
higher vulnerability rating than those below that value.

It should be noted that the initial vulnerability ratings
assigned prior to testing may be equal or unequal. For
example, assigning initial vulnerability ratings to the regions
may include initializing all of the vulnerability ratings to
zero or other initial value.

Once the regions have been defined and the initial vul-
nerability ratings have been assigned, fuzz testing is
executed, prioritizing attacks according to the vulnerability
ratings. For example, in FIG. 3B, regions with higher
vulnerability ratings may be tested prior to or more rigor-
ously than regions with lower vulnerabilities. Based on
results of the testing, the vulnerability rating for each region

US 9,432,394 B1

5

302 may be updated. In one example, a vulnerability rating
for each region 302 is incremented for each time and attack
causes a change in the process flow of network protocol
stack implementation 104.

FIG. 3C illustrates updated vulnerability ratings after an
initial iteration of vulnerability testing for each of the
regions. In FIG. 3C, region 302A has a vulnerability rating
of 17, which is the highest of all of the regions in the initial
target space. Accordingly, as illustrated in FIG. 3D, region
302A is subdivided into sub-regions 304, and each sub-
region is tested to determine its vulnerability rating. The
vulnerability ratings of the sub-regions are stored in
memory. FIG. 3E illustrates an example of vulnerability
ratings of sub-regions 304. In FIG. 3E, a particular sub-
region 304A has a value of 10, which means that 10 of the
17 violations occurring in region 302A were caused by
parameters in sub-region 304A.

Sub-region 304A may be further subdivided and the
testing may be repeated for sub-region 304 A. The process of
dividing the parameter space into sub-regions and perform-
ing black box fuzz testing for the sub-regions may be
iteratively repeated in the manner illustrated in FIGS. 3A-3E
until the parameter values causing the vulnerabilities are
sufficiently localized or the user decides to end the testing.
For example, after the first iteration of fuzz testing, the user
may know that 17 failures occurred in region 302A but may
not know which parameter values within region 302A
caused the failures. When the fuzz testing is repeated,
sub-region 304A is determined to have 10 of the 17 failures
from the previous iteration. The remaining violations are
distributed throughout the other sub-regions in region 302A.
The user may determine that sub-region 304 A is sufficiently
small and that the failures are sufficiently clustered in
sub-region 304A for further analysis. If the failures had been
evenly distributed in the sub-regions, the user may elect to
stop the fuzz testing and reconfigure the parameter space.

Once the parameter values causing the vulnerabilities
have been sufficiently localized or the testing has ended, the
network protocol stack implementation software may be
analyzed with respect to the fields and field values that
caused the high vulnerability. For example, the code of the
network protocol stack may be analyzed using a debugger or
other tool separate from fuzzer 116 to identify the cause of
the high vulnerabilities.

FIG. 4 is a flow chart illustrating an exemplary process for
converging on network protocol stack vulnerabilities using
fuzzing variables, variable ratings, and progressive conver-
gence according to an embodiment of the subject matter
described herein. Referring to FIG. 4, in step 400, an initial
protocol and field value space is defined for fuzz testing of
a network communications protocol stack implementation.
For example, as illustrated in FIG. 3 A, the initial target space
may be a complete or relatively complete set of protocol
fields and field values. In one example, the user may
configure fuzzing for two variables in the IP and Internet
control message protocol (ICMP) protocols. The fuzzed
parameter variables for the two variables or fields may be
defined as follows:

Protocols: 1P, ICMP

Fields: IP-Fragment-Offset, UDP-Length

Values: [P-Fragment Offset [0-100]; UDP-Length[0-200]
In the above-listed example, the IP fragment offset and UDP
length fields are the fields whose parameter values will be
fuzzed. The fuzzed parameter values for the IP fragment
offset range from zero to one hundred. The fuzzed parameter
values for the UDP length field range from zero to two
hundred. With these ranges of parameter values for the two

30

40

45

60

6

different fields, the number of combinations of parameter
values to be tested is 200100 or 20,000 parameters.

In step 402, the initial space is divided into regions
corresponding to combinations of protocol fields and field
values. For example, as illustrated in FIG. 3B, the initial
space is divided into regions 302. Each region 302 corre-
sponds to a subset of protocol fields and field values that is
smaller than the combinations in the initial set. Continuing
with the IP-ICMP example, if the target space is divided into
eight equally sized regions as illustrated in FIG. 3B, each
region may correspond to 2500 of the 20,000 possible
combinations of the IP fragment offset and UDP length
parameter values.

In step 404, vulnerability ratings are assigned to at least
some of the regions. The initial vulnerability ratings may be
assigned by the user or by vulnerability ratings module 114.
If no information is know about the initial vulnerability
ratings of the regions, the initial vulnerability ratings of the
regions may be initialized to be equal to each other. If it is
known that a particular region has higher vulnerability or is
otherwise of interest to the tester, the regions may be
assigned a higher initial vulnerability than other regions.

In step 406, fuzz testing of a network communications
protocol stack implementation is performed using the
regions. For example, network equipment test device 100
may perform black box fuzz testing of protocol stack
implementation 104 by sending test packets to device under
test 102 with combinations of fuzzed protocol fields and
field values corresponding to the combinations of protocol
fields and field values for each region 302. Continuing with
the IP-ICMP example, progressive fuzzer 116 may generate
test ICMP over UDP/IP packets with IP fragment offset and
UDP length values for the combinations corresponding to
regions 302.

In step 408, the vulnerability ratings of the regions are
updated based on results of the testing. As stated above, the
vulnerability rating of each region may be incremented each
time a failure or a transition to an invalid state occurs for one
of the combinations of protocol fields and field values in the
particular region being tested. The updating of vulnerability
ratings may be performed by vulnerability ratings module
114 or by progressive fuzzer 116 based on results of the fuzz
testing. Continuing with the ICMP-IP example, an updated
vulnerability rating of each region of 2500 possible combi-
nations of the UDP length and IP fragment offset is assigned
an updated vulnerability rating based on the number of times
a combination of values for these two parameters caused a
change of state in the in the network protocol stack imple-
mentation being tested. In FIG. 3C, the updated vulnerabil-
ity ratings range from O to 10.

In step 410, regions with vulnerability ratings higher than
other regions are identified based on the updated vulnerabil-
ity ratings of the regions. For example, as illustrated in FIG.
3C, region 302A has the highest vulnerability rating of 10.

In step 412, it is determined whether the parameter values
causing the violations have been sufficiently localized. This
step may be performed by reviewing the size of the regions
or sub-regions and the clustering of the violations in the
regions or sub-regions at the end of each fuzz testing
iteration. Once a desired region/sub-region size and viola-
tion causing parameter value localization have been
achieved, the fuzz testing can be stopped and further analy-
sis independent of fuzz testing can be performed. In the
ICMP-IP example, region 302A corresponds to 2500 pos-
sible combinations of the IP fragment offset and the UDP
length. The user may stop the fuzz testing after the first
iteration if 2500 is small enough for further analysis and the

US 9,432,394 B1

7

failures or protocol violations are sufficiently clustered in
region 302A. As stated above, if the failures or protocol
violations are not sufficiently clustered after a fuzz testing
iteration, the fuzz testing may be stopped and the initial
parameter space may be reconfigured.

If the violation causing parameter values have been
sufficiently localized, control proceeds to step 414 where
fuzz testing is ceased and the protocol implementation is
analyzed based on the vulnerabilities identified during the
fuzz testing. For example, fuzzer 112 may output the 2500
possible combinations of the field values that caused the 10
failures, and the user may analyze the code of the network
protocol stack implementation for these possible values.

If in step 412 it is determined that the violation causing
parameter values have not been sufficiently localized and the
user desires to continue the fuzz testing, control proceeds to
step 416 where the region is divided into sub-regions and
then to steps 408-410 where the fuzz testing is performed for
the sub-regions, the vulnerability ratings are generated and
recorded for the sub-regions and it is determined whether the
parameter values causing the failures are sufficiently local-
ized after testing the sub-regions. For example, in FIG. 3D,
region 302A is divided into 16 sub-regions. For the IP-ICMP
example, region 302A includes 2500 combinations of
parameter values. Thus, each sub-region of region 302A
may include 2500/16 or 156.25 combinations (on average)
of the IP fragment offset and the UDP length parameter
values. The fuzz testing may be repeated for each sub-region
of 156 parameter value combinations, vulnerability scores
may be recorded, and sub-region 304A of region 302A may
be identified as the sub-region with the highest vulnerability
rating, as illustrated in FIG. 3E. If sub-region 304A is
determined to sufficiently localize the violation causing
parameter values, the fuzz testing may be stopped and code
analysis relating to the 156 parameter value combinations
may be identified. If sub-region 304A is determined not to
sufficiently localize the violation causing parameter values,
the parameter space may be further divided, and fuzz testing
may be repeated for the divided sub-regions.

It should be noted that prior to performing each iteration
of fuzz testing for a set of regions or sub-regions, vulner-
ability ratings for the regions or sub-regions may be initial-
ized to a predetermined value so that the vulnerability
ratings for the regions or sub-regions will reflect vulner-
abilities caused in the current round of testing.

It should also be noted that the steps illustrated in FIG. 4
can be performed for multiple different sets of regions and
sub-regions such that different sets of parameter value
combinations that cause protocol stack failures are identi-
fied. For example, the steps illustrated in FIG. 4 can be
executed in parallel to identify each of the localized shaded
areas in FIG. 1 that result in protocol stack vulnerability.

Thus, using the steps illustrated in FIG. 4, the search for
the protocol field/value space that causes errors in a network
protocol stack implementation is progressively narrowed.
Such progressive narrowing of the search for fields and
values that cause vulnerabilities enables targeted analysis to
be performed. A network equipment test device that imple-
ments progressive fuzzing using vulnerability ratings and
progressive convergence improves the technological field of
network equipment testing. A network equipment test device
that implements the progressive fuzzing described herein
also improves the functionality of the network equipment
test device itself by decreasing the number of tests that are
required to be performed to locate specific variables causing
vulnerabilities.

10

15

20

25

30

35

40

45

50

55

60

65

8

It will be understood that various details of the presently
disclosed subject matter may be changed without departing
from the scope of the presently disclosed subject matter.
Furthermore, the foregoing description is for the purpose of
illustration only, and not for the purpose of limitation.

The invention claimed is:

1. A method for converging on network protocol stack
vulnerabilities using fuzzing variables, vulnerability ratings
and progressive convergence, the method comprising:

defining an initial protocol field and field value space for

fuzz testing of a network communications protocol
stack implementation;

dividing the initial protocol field and field value space into

regions corresponding to combinations of protocol
fields and field values;

assigning vulnerability ratings to at least some of the

regions;

executing fuzz testing of the network communications

protocol stack implementation using the fields and field
values defined by the regions;

updating the vulnerability ratings of the regions based on

results of the testing;

identifying, based on the updated vulnerability ratings, at

least one region with a higher vulnerability rating than
other regions; and
dividing the at least one region into sub-regions and
performing fuzz testing of the sub-regions, wherein
performing fuzz testing for the sub-regions includes:

identifying at least one sub-region with a higher vulner-
ability rating than other sub-regions;

determining whether violation causing parameter values

are sufficiently localized in the at least one sub-region;
and

in response to determining that the violation causing

parameter values are not sufficiently localized in the at
least one sub-region, dividing the sub-region into sub-
regions and performing fuzz testing for the sub-regions.

2. The method of claim 1 wherein the initial protocol field
and field value space includes a combination of different
network protocol fields and ranges of values for those fields.

3. The method of claim 2 wherein executing fuzz testing
for the regions includes transmitting test packets to a device
under test, wherein the test packets include fuzzed parameter
values corresponding to the ranges for the different network
protocol fields.

4. The method of claim 1 wherein dividing the initial
space into regions includes dividing the initial space into
regions that correspond to subsets of the initial protocol field
and field value space.

5. The method of claim 1 wherein assigning vulnerability
ratings to at least some of the regions includes receiving the
vulnerability ratings from a user or automatically assigning
the vulnerability ratings to the regions.

6. The method of claim 1 wherein executing fuzz testing
of the network communications protocol stack implemen-
tation using the regions includes transmitting test packets to
a device under test that includes the network communica-
tions protocol stack implementation, wherein the test pack-
ets include combinations of protocol fields and field values
corresponding to the regions.

7. The method of claim 1 wherein updating the vulner-
ability ratings of the regions includes incrementing a vul-
nerability rating for a region each time fuzz testing with
parameter values corresponding to the region causes the
network communications protocol stack implementation to
fail or transition to an invalid state.

US 9,432,394 B1

9

8. The method of claim 1 comprising, in response to
determining that the violation causing parameter values are
sufficiently localized in the at least one sub-region, ceasing
fuzz testing and analyzing the network communications
protocol stack implementation for vulnerability using the
identified parameter space.

9. A system for converging on network protocol stack
vulnerabilities using fuzzing variables, vulnerability rating
and progressive convergence, the system comprising:

a computing platform including a processor and a

memory;

a progressive fuzzer stored in the memory and executed
by the processor for defining an initial protocol field
and field value space for fuzz testing of a network
communications protocol stack implementation and
dividing the initial space into regions corresponding to
combinations of protocol fields and field values; and

a vulnerability ratings module stored in the memory and
executed by the processor for assigning vulnerability
ratings to at least some of the regions, wherein the
progressive fuzzer executes fuzz testing of the network
communications protocol stack implementation using
the fields and field values defined by the regions,
wherein the vulnerability ratings module or the pro-
gressive fuzzer updates the vulnerability ratings of the
regions based on results of the testing, wherein the
progressive fuzzer identifies, based on the updated
vulnerability ratings, at least one region with a higher
vulnerability rating than other regions, divides the at
least one regions into sub-regions and performing fuzz
testing of the sub-regions, wherein, in performing the
fuzz testing for the sub-regions, the progressive fuzzer:

identifies at least one sub-region with a higher vulner-
ability rating than other sub-regions;

determines whether violation causing parameter values
are sufficiently localized to the at least one sub-region;
and

in response to determining that the violation causing
parameter values are not sufficiently localized in the at
least one identified sub-region, divides the sub-region
into sub-regions and performs fuzz testing for the
sub-regions of the identified sub-region.

10. The system of claim 9 wherein the initial protocol field
and field value space includes a combination of different
network protocol fields and ranges of values for those fields.

11. The system of claim 10 wherein, in performing fuzz
testing for the regions, the progressive fuzzer transmits test
packets to a device under test, wherein the test packets
include fuzzed parameter values corresponding to the ranges
for the different network protocol fields.

12. The system of claim 9 wherein the progressive fuzzer
divides the initial space into regions that correspond to
subsets of the initial protocol field and field value space.

13. The system of claim 9 wherein the vulnerability

10

15

20

25

30

35

40

45

ratings module receives the vulnerability ratings for the 55

regions from a user or automatically assigns the vulnerabil-
ity ratings to the regions.

10

14. The system of claim 9 wherein the progressive fuzzer

executes the fuzz testing of the network communications
protocol stack implementation using the regions by trans-
mitting test packets to a device under test that includes the
network communications protocol stack implementation,
wherein the test packets include combinations of protocol
fields and field values corresponding to the regions.

15. The system of claim 9 wherein the vulnerability

ratings module or the progressive fuzzer increments a vul-
nerability rating for a region each time fuzz testing with
parameter values corresponding to the region causes the
network communications protocol stack implementation to
fail or transition to an invalid state.

16. The system of claim 9 wherein the progressive fuzzer

is configured to cease the fuzz testing in response to deter-
mining that the violation causing parameter values are

sufficiently localized to the identified sub-region.

17. A non-transitory computer readable medium having
stored thereon executable instructions that when executed by

the processor of a computer control the computer to perform

steps comprising:

defining an initial protocol field and field value space for
fuzz testing of a network communications protocol
stack implementation;

dividing the initial space into regions corresponding to
combinations of protocol fields and field values;

assigning vulnerability ratings to at least some of the
regions;

executing fuzz testing of the network communications
protocol stack implementation using the fields and field
values defined by the regions;

updating the vulnerability ratings of the regions based on
results of the testing;

identifying, based on the updated vulnerability ratings, at
least one region with a higher vulnerability rating than
other regions; and

dividing the at least one region into sub-regions and
performing fuzz testing of the sub-regions, wherein
performing fuzz testing for the sub-regions includes:

identifying at least one sub-region with a higher vulner-
ability rating than other sub-regions;

determining whether violation causing parameter values
are sufficiently localized in the at least one sub-region;
and

in response to determining that the violation causing
parameter values are not sufficiently localized in the at
least one sub-region, dividing the sub-region into sub-
regions and performing fuzz testing for the sub-regions.

18. The non-transitory computer readable medium of
claim 17 wherein the initial protocol field and field value
space includes a combination of different network protocol
fields and ranges of values for those fields.

#* #* #* #* #*

